BeamNG.drive supports steering wheels and controllers that are PC-compatible. Here’s a list of some devices that have been tested: Controller Support .
Always install the latest drivers and firmware for your device. It doesn’t matter if things appear to work okay, you must still install the drivers. If unsure how to install them, you can read its instructions or contact its manufacturer.
Once installed, open the manufacturer configuration tool:
Once the drivers are installed, configured and running, you can tweak the BeamNG settings.
Our sim includes in-game configurations for some steering wheels: in these cases you can just drive.
For devices without a premade in-game configuration, you need to assign the controls in Options > Controls > Bindings > Vehicle:
When tweaking the ‘steering’ binding, the force feedback settings will appear below the normal settings. Configuring force feedback can be difficult to get exactly right. Every driving style favours different force feedback settings.
Here’s some steps to use as a starting point:
This is your basic staring point. Feel free to tweak the rest of settings now. Note: If you modify the driver configuration, you may need to re-adjust the in-game configuration.
Force feedback works by asking the steering wheel drivers to apply certain torque (certain rotational force) through the motors housed inside your steering wheel.
In an ideal world, the resulting torques would be proportional to the torques you initially requested.
However, in practice, this is rarely the case. Sometimes, when you ask 1 unit of torque, you may get 1.2 resulting units of torque. And then you ask for 2 units, but get only 1.9 units back. The result can vary wildly along the range of torques, and is impossible to know without testing each of all the possible torque values.
To compensate for this lack of linearity, we provide the option to use a Response Correction Curve. This curve basically tells BeamNG.drive how the steering wheel will respond to all possible requests. Based on that, BeamNG.drive will smartly “lie” to the drivers, requesting different torques, to get the actual desired resulting torque.
Before continuing, one word about reusability of response curves:
The response curve will vary depending on the Windows drivers configuration.
For example, if you change the effects strength (or any other setting) in the Windows driver configuration panel, the response curve will most probably be different afterwards.
Keep that in mind if you are trying to use a response curve for your wheel while tweaking the Windows driver configuration.
Note: BeamNG.drive bundles response curves tailored to the recommended driver configuration (see the 2nd section of this guide). If you are not using the recommended configuration, the response curves may be off, and it is recommended to re-generate it for your specific drivers configuration. But even if you don’t, the result will typically be better than disabling the curve altogether.
Also note that the response curve is usually the same for a given brand and model of steering wheel (unless it has undergone some serious hardware revision but still keeping the same model identifier). If you create a response curve for certain steering wheel model and drivers configuration, it will most probably be reusable by other owners of your steering wheel.
Generating a response curve involves precise testing of your hardware, noting down what happens each time you apply certain torques.
There are several tools out there that allow to do it in an automated way, and register the resulting curve in a file, on disk.
BeamNG.drive is able to directly read the response curve files generated by the most popular 3rd party tools (such as WheelCheck and Force Curve Modifier), without needing any further format modifications. So just run those tools, export the result to a file, and place it at C:\Users\your_username\AppData\Local\BeamNG.drive\settings\inputmaps\wheel.*
.
Note: the numbers contained in LUT files have a different meaning than those contained in the rest of file types (even if they are all ‘just’ pairs of numbers). Please do not rename the “.lut” extension to something else, this way BeamNG.drive will know it needs to handle the LUT numbers differently than is usual.
For more information, please search the web for those 3rd party tool names, and follow any of the existing guides out there.
Note: Hover your mouse over the response curve graph of your BeamNG.drive FFB menu to get more detailed information about the naming conventions. Typically wheel.csv will do.
BeamNG.drive internally sanitizes the curve you see on screen:
After this sanitization has taken place, the curve is used in this way:
You will typically want to tweak the curve just a little bit before it is used by the game.
If you have already placed the wheel.csv
file in your inputmaps directory, the game will read it each time you restart the game or press Ctrl+L to reload the input system.
When that happens, the curve is embedded into your inputmap file. If you modify the source wheel.csv file, and press Ctrl+L, the inputmap file will be updated again. Remove the source file when you are happy with it.
Measurement errors:
If you have only generated the response curve once, it is possible that you have some error in the readings. For example, if you accidentally touched the wheel while it rotated, or bumped into your desk, then that curve point may be incorrect.
Repeating the measurement several times, and comparing the resulting curves, allows you to notice any possible outlier values that may have happened.
Noise:
If you correctly measure the curve several times, you will notice slight variations. This can happen because of many circumstances, e.g. temperature changes, slight gear or belt positioning differences, etc.
Measuring the curve several times not only allows to detect errors (as described before) but are useful to remove this kind of noise. You can average all of the curves together, and use the resulting curve in BeamNG.drive. Note that there shouldn’t be a huge difference from one run to the next (unless your wheel is damaged), so it’s okay if you decide to skip this step :-)
Low torque vibration:
Most wheels cannot handle low torques correctly. The response curve will usually be very plain in the first section, and this will force BeamNG.drive to request huge torques to compensate. This usually creates unwanted vibrations.
To prevent this, make sure you add a slight initial slope to the curve, even if the response curve clearly showed a huge dead zone in that region. This will smooth out the jerky response for low torque situations.
To assist you with tweaking or verifying the response curve, you can visualize the results in real time, while driving.
Apps
> Add app
FFB Graph
somewhere on the screen and click Done
.The data you are looking for here is:
For example, in most steering wheels, you will typically notice that uncorrected
forces are smaller than current
forces in low-torque situations, because of the initial FFB dead zone.
A very good steering wheel should have a very linear FFB response, and so the uncorrected
and current
forces should be almost the same through the entire range of torques.